Journal club report - Extraction of uranium from non-saline and hypersaline conditions

Commercial ion exchange resins are formed from cross-linked polymers, which commonly have styrene/divinylbenzene or acrylate backbones. They can be either macro- or microporous and are produced on a large scale by a patented technology known as “spray-jetting”, which allows the formation of small beads, ~300 microns in diameter and of a narrow size distribution. Specific organic functional groups are then grafted to the polymer in multi-step synthetic processes. These can be designed to be selective to certain ions in aqueous solution, leading to purification and separation applications.

This research article is a collaborative effort between researchers at the University of Manchester and Dr Mark Ogden of the department of chemical and biological engineering and features the use of “Purolite S930+”, a resin bearing iminodiacetic acid functional groups. This resin is commercially available for decontamination of heavy metals from industrial wastewater. However here, a completely unique application is envisaged; that of selective uranyl uptake for geological uranium capture and recovery. This is an essential process for nuclear fuel production and consumes massive amounts of borehole water. This of course is a scarce resource in many countries and one line of thinking is to get round this problem by substituting seawater. However, this requires the ion-exchange resin to work well in challenging “hypersaline” conditions.

This study investigated the ability of S930+ to extract uranyl ions from a simulated aqueous feed solution, containing high levels of salt, iron, copper and sulfate. Encouragingly, the resin was found to have greater affinity for uranyl than the other two cations in the system and furthermore and crucially, there was negligible suppression of the uranyl uptake even at extremely high chloride concentrations (up to 6 M). Although careful control of the feed pH would be necessary, it is thought that there is real applied potential in an ion-exchange system of this nature in the uranium mining industry.

From a more fundamental perspective, the researchers were also able to perform Extended X-Ray Absorption Fine Structure (EXAFS) work at the Diamond Light Source in Oxfordshire. EXAFS is a type of spectroscopy that irradiates a sample with X-rays and measures the electron binding energies on the different atoms making up the sample. Through this, an accurate prediction could be made of how the uranyl cations were interacting with the resin functionality and it was revealed that a tridentate coordination mode was occurring (as seen in the accompanying diagram), with the other coordination sites being filed by a sulfate anion. This is the first time such behaviour has been properly qualified.

Original research article: “Extraction of uranium from non-saline and hypersaline conditions using iminodiacetic acid chelating resin Purolite S930+”, J.T.M. Amphlett, C.A. Sharrad and M.D.Ogden, Chemical Engineering Journal, 342, 133-141.

Article by Tom Robshaw; a 2nd year EPSRC Polymers, Soft Matter and Colloids CDT PhD student.

Starting PhD life

I recently (much less recently than it feels) started my PhD program at Sheffield under the CDT program for Polymers, Soft Matter and Colloids. I never anticipated, when I started my undergraduate degree here at Sheffield four years ago, that I’d end up staying and studying for a full 8 years. But when I got to my fourth year, I finally got a taste for what real research would be like. And I realised that I actually quite liked it. It was a world away from undergraduate labs, doing the same experiments over and over and knowing exactly what the outcome would be. Jumping through the same hoops as everyone else had done over the years. This way, I was getting results that no-one had ever seen before. Doing experiments that I thought of myself, in order to get the answers to questions that I’d generated.

Doing a PhD that was sponsored by industry was one thing that I was dubious about. I had previously done a year in industry and realised that it wasn’t for me. I loathed the rigidity and routine of each day. If there was a project I was truly interested in, I didn’t have any authority in how it was carried out. You just had to follow where the money was going. So doing a PhD for a company like Lubrizol, I was worried they were going to dictate everything I did. But the first 6 months they have entirely let me take the reins. They gave me a very broad and open question that I needed to answer. What makes a good pigment dispersant, good? This was something that I’d been thinking about for the past couple of years, since it was the basis of my third and fourth year project (albeit much more specific areas). Our first meeting consisted of a brainstorming session, where everyone pitched in various ideas and topics for me to explore during my PhD.

So since then, I’ve been trying to explore some of those ideas. Some things work, some things don’t. Some days you feel like everything is going great, some days you feel like you’re never going to find the answers. But despite this, I don’t think there is anywhere I would rather be. If I’ve stuck around this long, it can’t be that bad, right?


Article by Shannon North; a PhD Student on the EPSRC Polymers, Soft Matter and Colloids CDT programme. For more information, please contact Dr Joe Gaunt at the Polymer Centre.

Journal club report - Device for testing tennis shoe-court interactions

One of the challenges faced by tennis players is the interaction of their shoes with the court.  Tennis is played on a range of surfaces with different properties. For example, it it much easier to slide across a clay court than a hard court due to the lower friction with the less rough surface.  Researchers at the University of Sheffield investigated tennis shoe-court interactions and subsequently developed a portable mechanical device that can assess the quality of a tennis court which will be utilised by the International Tennis federation.

The rubber used to make tennis shoes is viscoelastic which means if a force is briefly applied to the material it is deformed and then returns to its original shape but when a force is applied for longer the material is deformed permanently.  The rubber soles are compressed against the surface of a tennis court and the rubber molds its shape to the roughness of the surface which is the cause of the friction. Therefore, when designing the test it was important to understand how load, surface roughness, shoe orientation, temperature and contact area contribute to the frictional force and a lab-based test rig was built for initial tests.  The researchers concluded that friction is mainly affected by sole surface temperature and surface roughness, and also the presence of a tread in the shoe sole.

In the design of the portable test device, the main features considered were reliability, size and weight for transportation and the ability to represent match play conditions well. Also, the test shoe needed to be interchangeable to allow testing of different sole materials and sizes. The final design consists of a test shoe slider attached to a sled with weights mounted on it, a pneumatic ram which provides a horizontal force to drive the sled. The horizontal force is applied until the test shoe slider is initiated and friction is measured.

The researchers hope that with further development the device could become part of a standard test to assess the quality of courts for elite tennis competitions and eventually be used to improve the quality of tennis courts for all players.

Article by Naomi Brown; a PhD Student on the EPSRC Polymers, Soft Matter and Colloids CDT programme. For more information, please contact Dr Joe Gaunt at the Polymer Centre.

Original Paper:

D. Ura, M Carré, Development of a Novel Portable Test Device to Measure the Tribological Behaviour of Shoe Interactions with Tennis Courts, Procedia Engineering, 147, 550-555, 2016.

Anti-microbial Graft Co-polymer Gels


In 2008, researchers at the University of Sheffield published work regarding the synthesis of a triblock copolymer which formed a biocompatible gel suitable for use in wound dressings.1Unexpectedly, these gels also exhibited antimicrobial activity towards a range of microorganisms.2 This work has recently been further studied in a collaboration between the Department of Chemistry, the School of Clinical Dentistry and the Department of Engineering Materials at the University of Sheffield. This study aimed to understand more about the relationship between the polymer structure or architecture and its antimicrobial activity. This exciting research has potential be used in the future to provide alternatives to standard antibiotic treatments in a society where they have become much overused and antibacterial resistance is a growing problem.3

The original material synthesised had an ABA structure comprising of blocks of 2-hydroxypropyl methacrylate (HPMA) and 2-(methacryloyloxy) ethyl phosphorylcholine (MPC).An analogous graft-copolymer has been synthesised where PHPMA chains have been attached onto a PMPC chain via RAFT polymerisation, a form of controlled free-radical polymerisation used frequently by the research group of Professor Steve Armes in the Department of Chemistry. As well as this, AB diblock copolymers of the same monomers have been synthesised and shown to form self-assembled ‘worm-gels’. This novel material is biocompatible and has also been used in this study to determine if it is due to the gel property of polymers with this composition which leads to their antimicrobial properties.

Biological assays with staphylococcus aureus have been carried out on all of these PHPMA-PMPC materials to determine more about the mechanism of antimicrobial activity. Results have shown that the ‘worm-gels’, although biocompatible gels, were not antimicrobial. However, the graft copolymer gels have been shown inhibit bacterial growth and further studies by transmission electron microscopy show that this is likely due to the hydrophobic PHPMA chains in the gel penetrating and therefore causing damage to the bacterial membrane. Another interesting property of this graft copolymer gel is its thermoreversible gelation behaviour, making it applicable in the formation of antibacterial smart wound dressings.

Original article: Antimicrobial Graft Copolymer Gels. A. C. Harvey, J. Madsen, C. W. I. Douglas, S. MacNeil, S. P. Armes, Biomacromolecules, 2016, 2710-2718

Article by Rheanna Perry; a PhD Student on the EPSRC Polymers, Soft Matter and Colloids CDT programme. For more information, please contact Dr Joe Gaunt at the Polymer Centre.

(1)        Madsen, J.; Armes, S. P.; Bertal, K.; Lomas, H.; MacNeil, S.; Lewis, A. L. Biomacromolecules 2008, 9 (8), 2265–2275.

(2)         Bertal, K.; Shepherd, J.; Douglas, C. W. I.; Madsen, J.; Morse, A.; Edmondson, S.; Armes, S. P.; Lewis, A.; MacNeil, S. J. Mater. Sci. 2009, 44 (23), 6233–6246.

(3)           Harvey, A. C.; Madsen, J.; Douglas, C. W. I.; MacNeil, S.; Armes, S. P. Biomacromolecules 2016, 17 (8), 2710–2718.

Polymer Centre Highlight – Self-Assembled Graphene Oxide–Gelatin Nanocomposite Hydrogels

Hydrogels consist of a network of hydrophilic polymer chains held together by cross-links. These cross-links prevent the individual motion of polymer chains leading to the formation of a ‘gel’. Hydrogels closely resemble biological tissues due to their high water content and environmental sensitivities. This makes them attractive for biomedical applications, including tissue engineering and drug delivery.

The cross-links between polymer chains can be either physical or chemical. Physically cross-linked gels tend to be weak and the physical cross-links between the polymer chains are reversible. The weak mechanical properties limit the use of physically cross-linked gels in wider applications.

Chemically cross-linked gels are formed following a chemical reaction, where a chemical cross-linking agent is added to a solution of polymer chains.  By varying the quantity of cross-linking agent, the degree of cross-linking can be altered to optimise the gel properties for different applications. Although chemically cross-linked gels have attractive properties, the toxicity of cross-linking agents limits their use in biomedical applications.

Polymer centre academic Dr. Biqiong Chen has attempted to overcome these boundaries by synthesising novel, physically cross-linked, graphene oxide (GO)-gelatin nanocomposite hydrogels by self-assembly.

Both gelatin hydrogels and graphene-based materials have previously been studied for applications in drug delivery and tissue engineering. Gelatin is a denatured biopolymer, derived from collagen (found in skin and muscle). It has advantageous properties such as being biocompatible, biodegradable and low cost. GO, the oxidised form of graphene, has low toxicity. Gelatin-functionalised GO nanosheets are non-toxic and can be removed from the body by metabolism. Although these gels are physically cross-linked, multiple hydrogen-bonding and electrostatic interactions between the gelatin chains and GO sheets increase the strength of the 3D network significantly. These gels also exhibit self-healing properties.

The GO-gelatin hydrogels are also pH responsive and can be used for pH-sensitive drug release. At acidic pH (pH 1.7) the GO sheets form tightly packed aggregates preventing drug release. At neutral pH (pH 7.4) the pore size increases, promoting the diffusion of an encapsulated drug from the hydrogel to its surrounding liquid environment. This pH-sensitive behaviour would allow selective drug release into the intestine (pH 6.6-7.5) with minimal release in the stomach (pH 1.0-2.5). Conventional drug delivery methods can carry drugs to a specific location but are unable to protect the drug against the acidic and enzymatic environment of the stomach which can lead to the drug being released early or being altered. In contrast, these GO-gelatin hydrogels can protect the drug from enzymatic attack in the stomach. This allows the drug to be maintained and then released in a more controlled manner.

This research was published by Dr Biqiong Chen’s research group in the Journal of Polymer Science Part B and was supported by the University of Sheffield. Original Article: Y. Piao, B. Chen,  J. Polym. Sci. Part B: Polym. Phys, 2014, 53, 356 -367.

Article by Amy Cockram; a PhD Student on the EPSRC Polymers, Soft Matter and Colloids CDT programme. For more information, please contact Dr Joe Gaunt at the Polymer Centre.

An application of the Shear-Induced Polarized Light Imaging (SIPLI) Technique

Rheology is the study of flow and/or deformation of materials under applied forces. Using a plate-plate geometry, where the top and bottom features are flat plates, the measurement of rheological properties such as shear viscosity, normal stress, dynamic modulus and phase angle are enabled. Although this rotational rheology technique is well established, there is continuously growing interest in the combination of rotational rheology with other characterisation techniques to allow simultaneous measurements of viscoelasticity and additional physical properties.

Oleksandr Mykhaylyk et al. recently reported a new technique, shear-induced polarised light imaging (SIPLI), which combines rotational rheology with a reflection polariscope in order to study the behaviour of macromolecules and nanoparticles through changes in the birefringence properties of a material. Birefringence occurs when there is shear-induced orientation of particles which creates optical anisotropy. Birefringent materials change the orientation of the polarised light used to illuminate the sample, allowing it to pass through an analyser which is orthogonal to the axis of polarised light. The result of shear-induced orientation is a characteristic Maltese cross pattern. Conversely, non-birefringent samples do not change the orientation of plane-polarised light and thus the resulting polarised light image appears dark.

One application for SPILI presented by Mykhaylyk et al., is for the study of thermo-responsive block copolymer micelles. A number of particle morphologies can be produced from the self-assembly of amphiphilic block copolymers in a solvent selective for one of the blocks. These include spheres and vesicles, which form free-flowing liquids, and worms, which form free-standing physical hydrogels. Unlike the non-birefringent nature of the sphere and vesicle morphologies, the uniaxial anisotropy of the worm morphology results in birefringence. Consequently, the thermo-reversible worm-to-sphere transition, and associated reversible de-gelation, of a poly(glycerol monomethacrylate)-block-poly(2-hydroxypropyl methacrylate) hydrogel is an ideal system for SIPLI characterisation.

The rheology data presented in the study confirms the expected reduced viscosity on cooling to 5 °C associated with degelation during the worm-to-sphere morphology transition. Simultaneously, a loss of the Maltese cross pattern is observed due the formation of isotropic spherical particles. On heating, the opposite sphere-to-worm transition occurs resulting in the reappearance of the Maltese cross pattern and an increase in viscosity due to regelation. Here, SIPLI has allowed the study of structural-rheological property relationships of thermo-responsive block copolymer micelles. This demonstrates just one application of SIPLI, with many other advantages and applications of SIPLI discussed in the original article.

Original Article: Applications of Shear-Induced Polarized Light Imaging (SIPLI) Technique for Mechano-Optical Rheology of Polymers and Soft Matter Materials O. O. Mykhaylyk, N. J. Warren, A. J. Parnell, G. Pfeifer and J. Laeuger, J. Polym. Sci. Part B Polym. Phys., 2016, 1–20.

Article by Sarah Byard; a PhD Student on the EPSRC Polymers, Soft Matter and Colloids CDT programme. For more information, please contact Dr Joe Gaunt at the Polymer Centre.

Repeatable pre-cracking preparation for fracture testing of polymeric materials

A team of researchers from the University of Sheffield’s Department of Mechanical Engineering, including Polymer Centre academic Dr Rachel Tomlinson, have recently developed a method for creating repeatable pre-cracked polymer specimens for fracture testing.

Currently, specimens are prepared manually using a razor blade to create a small pre-crack from a notched sample. These samples are then tested to destruction to obtain fracture properties of the material. The procedure is heavily dependent on the operator and produces pre-cracks of varying length, angle and crack-front shape; all of these factors affect the repeatability and reliability of the subsequent test, as well as posing several safety concerns.

Using a technique first proposed by Tamura et al.[1], Dr Tomlinson’s team developed a methodology to produce consistent pre-cracks that meet the requirements of the various test standards for measuring fracture toughness. The technique involves applying loading in 2 directions; a tensile load to propagate a crack from the notch manufactured during specimen creation, and a compressive load applied across the width of the specimen at the desired distance from the notch to act as a barrier to further crack growth (Figure 1). A variety of compressive loads were investigated to find a suitable load for the test material which prevented crack propagation past the desired length, without causing the crack to then travel parallel to the direction of the compressive load. Once this was established, 40 test samples were prepared using this method and the pre-crack length and shape recorded. The results showed that the developed method was very repeatable, with 35 of the specimens accurate to within 10 microns of the desired crack length. A comparison of the crack fronts produced using the current and proposed methods showed that the developed method also produces a significantly straighter crack front, minimising the need to average the crack length across the width of the specimen and saving additional time.

Original Publication: Nithiananthan Kuppusamy, Rachel A. Tomlinson, Repeatable pre-cracking preparation for fracture testing of polymeric materials, Engineering Fracture Mechanics, Volume 152, February 2016, Pages 81-87, ISSN 0013-7944

Article by Ryan Brown; a PhD Student on the EPSRC Polymers, Soft Matter and Colloids CDT programme. For more information, please contact Dr Joe Gaunt at the Polymer Centre.

[1] Tamura K, Hasjimoto S. A precrack introducing method in CT-specimens for measuring KIC values of brittle materials. In: 15th International conference of experimental mechanics. ICEM15. Portugal; 2011. p. 7

Influence of Surface Wettability on Microbubble Formation

Over the last 20 years bubbles and their properties have been of high interest in the field of engineering and have found their way into a variety of applications such as biofuel production, medical imaging, and drug delivery. Lately, there has been a surge of interest in the study of microbubbles which are found in the size range of 1-999μm. The appeal of microbubbles comes from the fact that they possess a high surface area for a given gas volume and therefore enable high levels of mass transfer which is linked with the interfacial area between two phases.

Investigation into microbubble formation is essential in order to fully utilise their properties in applications. Many features of bubble formation have previously been explored and have been found to have a large impact, these include pore size and orientation, and flow rate.  The university and Polymer centre academic Dr Jonathan Howse et al. present an investigation into how the wettability of the diffuser surface impacts upon the dynamics of bubble formation process. Effects were studied at the orifice as well as upon the resultant bubble cloud produced by the wetting variations. The study comprises a thorough investigation into bubble formation by examining bubbles formed from a single pore, multiple well-defined pores, and sintered diffusers with a random network of pores.

Various surfaces were investigated during the course of this study which displayed contact angles from 107.9° to 13.1°. It was found that when a surface displays a contact angle lower than 90° the bubbles that are emitted are significantly smaller than those emitted from a surface with a contact angle above 90°. This data indicates that a contact angle of 90° is a switching point where the bubble size vastly changes.

Original article: Influence of Surface Wettability on Microbubble Formation, D. J. Wesley, R. M. Smith, W. B. Zimmerman, J. R. Howse, Langmuir, 2016, 32, 1269-1278.

Article by Thomas Neal; a PhD Student on the EPSRC Polymers, Soft Matter and Colloids CDT programme. For more information, please contact Dr Joe Gaunt at the Polymer Centre.

Photoluminescent and superparamagnetic quantum dots

Quantum dots are semiconducting nanostructures which emit radiation over a narrow spectrum. This is caused by the restricted movement of excitons, formed when electrons are excited from the valence band into the conduction band leaving holes. When excitons relax light is emitted over a narrow spectrum due to the small crystal size, typically 2-50 nm, with the wavelength of light emitted dependent on the size.

Recent work by Biqiong Chen and Shelia MacNeil at the Polymer Centre, in collaboration with various researchers, have harnessed the narrow spectrum emission of quantum dots for the potential of medical imaging alongside drug delivery and photothermal therapy.

The GO quantum dots, composed of reduced graphene oxide-iron oxide, combined the superparamagnetic properties of iron oxide with the drug loading capabilities of graphene oxide. The quantum dots were found to be inherently photoluminescent and superparamagnetic alongside being biocompatible making the materials ideal for use as medical devices.

Photoluminescence is useful in providing detection of the materials by fluorescent imaging. Superparamagnetism allows the magnetic moment of the quantum dots to be changed on a nanoscale. Hence, drug release from quantum dots can be stimulated by applying an external magnetic field for targeted drug delivery. Superparamagnetism also allows imaging by magnetic resonance imaging (MRI) to aid the visualisation of tumours and image guided surgeries.

The GO quantum dots were loaded with the model drug lidocaine hydrochloride. The loading ratio of drug to quantum dots was 0.31:1 which was fully released in phosphate buffered saline solution over 8 hours indicating efficient drug elution.

Testing of the GO quantum dots over a range of concentrations with varying laser powers showed a maximum temperature increase of 50 °C. This large temperature increase would be useful for treating tumours by photothermal therapy, where heat is applied directly to tumours to damage the cancerous cells.

Original article: Photoluminescent and superparamagnetic reduced graphene oxide-iron oxide quantum dots for dual-modality imaging, drug delivery and photothermal therapy, R. Justin, K. Tao, S. Román, D. Chen, Y. Xu, X. Geng, I. M. Ross, R. T. Grant, A. Pearson, G. Zhou, S. MacNeil, K. Sun and B. Chen, Carbon N. Y., 2016, 97, 54–70.

Article by Jasmine Lord; a PhD Student on the EPSRC Polymers, Soft Matter and Colloids CDT programme. For more information, please contact Dr Joe Gaunt at the Polymer Centre.

Structural Colour in the Natural World

Polymer centre academics, including Dr. Andrew Parnell, Prof. Patrick Fairclough and Dr. Oleksandr Mykhaylyk, have recently been involved in a collaboration that has helped shed more light on the origin of structural colour in the natural world. Structural colour refers to cases where colour arises from the scattering of light by nanoscale structural elements, as opposed to absorption of light by pigment molecules, and it is common to many species of animal. Achieving colour in this way has a number of benefits, for example it avoids the need for constant replenishing of degraded pigment.
It has been known for a long time that birds make use of structural colour in their feathers, although the mechanism for this has also long been disputed. More recently, it was suggested that the colour arises from a number of ‘spongy’, relatively disordered networks of beta-keratin and air. The difference in refractive index between the two phases leads to coherent scattering of light, with the exact wavelengths scattered depending on the dimensions of the feather’s nanostructure. The team at the University of Sheffield were specifically interested in the origin of the non-iridescent blues and whites found on the feathers of the Eurasian Jay, as well as several other birds with similar colouration from a wide geographical range.

In the study, the feathers were imaged using both optical and electron microscopy, although the most significant results were obtained by scanning with Small Angle X-ray Scattering (SAXS). This technique allows non-destructive probing of the nanoscopic length scales relevant to the optically-active structures. The colours of the feathers could be correlated to the size of the beta-keratin domains in the scattering structures, and it was shown that the variation in colour seen along individual barbs on the feather was due to continuous variation of the dimensions of the keratin ‘sponge’. However, the exact biological mechanism which allows this degree of control during the feather’s growth is still unknown.

Their results also help explain why non-iridescent green colours in the natural world are rarely generated by structural elements alone, despite being obviously useful for camouflage. The keratin structures were found to scatter relatively broad portions of the spectrum: ‘structural blue’ can be obtained by scattering the blue and the non-visible, ultraviolet portions of the spectrum, and ‘structural white’ can obtained by scattering light across the whole of the visible spectrum, but green light occupies too narrow a set of wavelengths to be scattered selectively. However, one solution to this is to use a combination of ‘structural blue’ and yellow pigment, with the green tree frog being a good example.

Original publication: Parnell, A. J., Washington, A. L., Mykhaylyk, O. O., Hill, C. J., Bianco, A., Burg, S. L., Parker, A. R. (2015). Spatially modulated structural colour in bird feathers. Scientific Reports5, 18317.

Article by Rhys Williams; a PhD Student on the EPSRC Polymers, Soft Matter and Colloids CDT programme. For more information, please contact Dr Joe Gaunt at the Polymer Centre.